Maths
 Mastery

Maths teaching in school

- Power maths scheme.
- Mastering number - a new National initiative started this term, to ensure a firm foundation in number - from Reception to Year 2.
- Key Instant Recall Facts - starting from year 1.

Power Maths

- Scheme of work for teaching maths mastery.
- Throughout the school, from reception classes to year 6.
- Emphasis is on understanding.
- Based on three phases of understanding concrete, pictorial and abstract.

Early Years - Nursery and Reception

'Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically.' Statutory framework for the early years foundation stage 2021
'It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers and not be afraid to make mistakes.' Statutory framework for the early years foundation stage 2021

- Emphasis is on understanding.
- Learning from practical work is key.

Early Years -Reception

Early learning goals:

- Have a deep understanding of number to 10;
- Subitise (recognise quantities without counting) up to 5 ;
- Automatically recall number bonds to 5 and some number bonds to 10;
- Verbally count beyond 20 ;
- Compare quantities to 10 in different contexts, recognising greater than, less than and the same as the other quantity;
- Explore and represent patterns within numbers to 10, including even and odd, double facts and how quantities can be distributed equally.

At the heart of Power Maths is the belief that all children can achieve. It's built on an exciting growth mindset and problem-solving approach.

P Pearson

Key aims of Power Maths

Keeping the whole class progressing together

Providing rich problem solving to challenge and engage every child

Nurturing a growth mindset and building children's confidence in maths

What is mastery?

"Mastering maths means acquiring a deep, long-term, secure and adaptable understanding of the subject" NCETM

We achieve this by ...

Growth mindset

Fixed mindset

```
"I'm not good at maths - l've never
been good at maths"
```

"I give up - I can't make this any better"
"If I fail I am a failure"
"I can't do this - I keep making mistakes"

Growth mindset

"I'm finding maths hard now, but I can improve with time and effort"
"I can improve if I keep trying"
"Most successful people fail along the way"
"Mistakes help me learn"

Growth Mindset

- Everyone can!
- It's okay to get it wrong.
- Praise hard work.
- Mind your language.
- Build in opportunities for success.

Meet the growth-mindset characters!

Flo
Flo is flexible and creative. She often with new methods to solve problems.

Can we do it differently?

Meet the growth-mindset characters!

> I will share my ideas!

See the lesson structure

Power up

1/Power Up

Work out all the ways to get a score of $I 0$.

Discover and Share

Subtracting tens and ones

포 푼

a) There are 15

Engaging scenarios

Share

Concrete-PictorialAbstract approach

a)

4 have eggs.
$15-4=11$
11 do not have eggs.
b)
dive into the sea.

I can count back 13 from 15. This takes time and I often make mistakes.

$15-10=5$
$5-3=2$
So
$15-13=2$
There are 2
left on the ice.

I know that 13 is 10 and 3 . I can subtract the 10 first and then 3.

Pearson

Think together

Think together

There are 18 ST
A penguin eats 12 S

```
Use I for
each S%.
```


$\begin{array}{lllllllllllllllllllllll}1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 2\end{array}$
$18-10=\square$
\square
So
$18-12=\square$
There are $\square 5$ left.

2 Work out 19-14.

So
$19-14=$ \square

Do Danny and Tamsin get the same answer?

Danny

$$
\begin{aligned}
& 18-10=\square \\
& \square-\square=\square \\
& \text { So } \\
& 18-15=\square
\end{aligned}
$$

Tamsin

Practice

Questions are presented

Subtracting tens and ones

(1) There are 16

How many are left?

So

There are \square left.

I will subtract 10 first. Then I will subtract 4.

There are

(2) a) Wark out 17 - 12 .

$$
\text { So } 17=12=\square
$$

b) Work out $19=11$.

Complete these number sentences.
a) $7=6=$

b) $9=5=\square$
$14=15=$ \square
$19-5=\square$

Calculations are connected so that children
Pearson think about the underlying concepts.

Models and representations

Shows how numbers can be split into parts. Helps show the connection between addition and subtraction.

Bar models

Helps show the maths problem as a picture.

Models and representations

$2+4=6$

Calculations

- Addition
- Subtraction
- Multiplication
- Division

Addition

Addition

Concrete	Pictorial	Abstract
Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

Subtraction - Y1

Concrete	Pictorial	Abstract
Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction.	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction.	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part.

Subtraction - Y2

Concrete	Pictorial	Abstract
Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

Subtraction - Y3

Concrete	Pictorial	Abstract
Use equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones.	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. $\begin{array}{r} H \text { T O } \\ \hline 13 \quad 5 \\ -\quad 38 \\ \hline 137 \\ \hline 175-38=137 \end{array}$ If the subtraction is a 3 -digit number subtract a 2 -digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10 s column.

Multiplication - Y1

Concrete	Pictorial	Abstract
Recognising and making equal groups	Recognising and making equal groups	Describe equal groups using words
Children arrange objects in equal and		
Unequal grops and understand how to		
recognise whether they are equal.	unequal groups.	Three equal groups of 4. Four equal groups of 3.

Multiplication - Y3

Concrete	Pictorial	Abstract
Understand how to use times-tables facts flexibly. all \square il iI II There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\bigcirc 0000$ 000000 00000 $\bigcirc 0000$ $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . 1 know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.

Division - Y1

Concrete	Pictorial	Abstract
Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Grouping Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Grouping Children may relate this to counting back in steps of 2,5 or 10 .

Division - Y3

Concrete	Pictorial	Abstract
Children explore dividing 2-digit numbers by using place value equipment. First divide the 10s. Then divide the 1 s .	Children explore which partitions support particular divisions. I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	Children partition a number into 10 s and 1 s to divide where appropriate. $\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ Children partition flexibly to divide where appropriate. $\begin{aligned} & 42 \div 3=2 \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide bx 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$

Number facts

By the end of Year 2 children should know:

- All addition and subtraction facts for each number to 20 fluently.
- Facts for the 2, 5 and 10 multiplication tables and related division facts.

Number facts

By the end of Year 3 children should know:

- Multiplication facts for $2,3,4,5,8$, and 10 and corresponding division facts.

CE VA PRIMARYSCHOO

Key Instant Recall Facts

Year 1 - Autumn 2

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

$0+1=1$	$0+4=4$	$0+6=6$
$1+0=1$	$1+3=4$	$1+5=6$
	$2+2=4$	$2+4=6$
$0+2=2$	$3+1=4$	$3+3=6$
$1+1=2$	$4+0=4$	$4+2=6$
$2+0=2$		$5+1=6$
	$0+5=5$	$6+0=6$
$0+3=3$	$1+4=5$	
$1+2=3$	$2+3=5$	
$2+1=3$	$3+2=5$	
$3+0=3$	$4+1=5$	
	$5+0=5$	

Key Vocabulary

What is 3 add 2?
What is 2 plus 2?
What is 5 take away 2 ?
What is 1 less than 4 ?

They should be able to answer these questions in any order, including missing number questions e.g. $3+\bigcirc=5$ or $4-\bigcirc=2$.

$\underline{\text { Top Tips }}$

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Use practical resources - Your child has one potato on their plate and you give them three more. Can they predict how many they will have now?
Make a poster - We use Numicon at school. You can find pictures of the Numicon shapes here: bit.ly/NumiconPictures - your child could make a poster showing the different ways of making 5 .

Play games - You can play number bond pairs online at www.conkermaths.com and then see how many questions you can answer in just one minute.

Key Instant Recall Facts

Year 2 - Autumn 2

I know doubles and halves of numbers to 20.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

$0+0=0$	$1 / 2$ of $0=0$	
$1+1=1$	$1 / 2$ of $2=1$	$11+11=22$
$2+2=4$	$1 / 2$ of $4=2$	$12+12=24$
$3+3=6$	$1 / 2$ of $6=3$	$13+13=26$
$4+4=8$	$1 / 2$ of $8=4$	$14+14=28$
$5+5=10$	$1 / 2$ of $10=5$	$15+15=30$
$6+6=12$	$1 / 2$ of $12=6$	$16+16=32$
$7+7=14$	$1 / 2$ of $14=7$	$17+17=34$
$8+8=16$	$1 / 2$ of $16=8$	$18+18=36$
$9+9=18$	$1 / 2$ of $18=9$	$19+19=38$
$10+10=20$	$1 / 2$ of $20=10$	$20+20=40$

Key Vocabulary

What is double 9 ?

What is half of 14 ?

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Use what you already know - Encourage your child to find the connection between the 2 times table and double facts.
Ping Pong - In this game, the parent says, "Ping," and the child replies, "Pong." Then the parent says a number and the child doubles it. For a harder version, the adult can say, "Pong." The child replies, "Ping," and then halves the next number given.

Practise online - Go to Purple Mash Maths and see how many questions you can answer in just 90 seconds.

www.princessfrederica.brent.

sch.uk/

Curriculum Overview
(scroll down to the bottom) Maths
Calculation policy
KIRFS: Key Instant Recall Facts

Please write any questions or

 comments on the chat function.Thank you for your continuing interest in maths.

