Princess Frederica C of E VA Primary School

Princess Frederica and the Power Maths calculation policy

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

Calculation Policy: September 2023
To be reviewed: September 2026

Calculation policy Reception

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. Children record their calculations in their own ways, there is no expectation of number sentences at this stage, however children may choose this way to record their thinking.
Key language: count, forwards, backwards, whole, part, recombine, break apart, ones, ten, tens, number bond, add, adding together, addition, plus, total, altogether, first, then, now, subtract, subtraction, find the difference, take away, minus, left, less, more, fewer, group, share, equal, equals, is equal to, groups, equal groups, divide, share, shared equally

Addition:

Children start to explore addition by sorting groups. They then use sorting to develop their understanding of parts and wholes.

Children combine groups to find the whole, using a part-whole model to support their thinking. They also use the part-whole model to find number bonds within and to 10 .

Using a five frame and ten frame, children add by counting on. They start by finding one more before adding larger numbers using counters or cubes on the frames.

Children use a number track to add by counting on. Linking this learning to playing board games is an effective way to support children's addition

Subtraction:

Children start to explore subtraction by sorting groups. They use sorting to develop their understanding of parts and wholes.

When comparing groups, children use the language more than and fewer than. This will lead to finding the difference when they move into KS1.

Children then connect subtraction with the idea of counting back and finding one less using a five frame to support their thinking.

They explore subtraction by breaking apart a whole to find a missing part. This links to their developing recall of number bonds.

Children count back within 20 using number tracks and ten frames to see the effect of taking away.

Multiplication and Division:

Children first start to look at the idea of equal groups through their exploration of doubles. They use five frames and objects to check that groups are equal.

Children then explore halving numbers by making two equal groups. They highlight patterns between doubling and halving seeing that double 2 is 4 and half of 4 is 2 .

As well as halving, children also explore sharing into more than two equal groups. They share objects one by one, ensuring that each group has an equal share.

	Finding number bonds to 10	Finding number bonds to 10
Children combine two groups to find a number bond to 10.	Use ten frames and part-whole models to represent key number bonds.	

	Adding by counting on (number track) Children jump along a physical number track. They start at the larger number and count on the smaller number to find the total.

Adding by counting on (number track)
Children use a number track and a counter. They start at the larger number and count on the smaller number to find the total.

Comparing groups
Children line up cubes or counters to compare the amount in each group. Lines can either be horizontal or vertical. A starting line helps to line the objects accurately.

There are more yellow cubes.
There are fewer red cubes.

	Tom has fewer conkers.	

Multiplication	Making doubles Children explore doubles in their environment including in games such as on dominoes or dice. They focus on the understanding of doubles being 2 equal groups. Double 4 is 8 . Double 2 is 4 . Double 3 is 6 .	Making doubles Children use five frames to find doubles by lining up counters or cubes. Double 4 is 8 .
Division	Halving and sharing Children explore halving and sharing through practical sharing using real life scenarios including sharing fruit or classroom equipment.	Halving and sharing

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.

A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.

They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.

In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.

Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2, 5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.

In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Princess Frederica Calculation Policy

Year 1			
	Concrete	Pictorial	Abstract
Year 1 Addition			
Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
Understanding part-part-whol e relationship	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6 .	Children draw to represent the parts and understand the relationship with the whole.	Use a part-whole model to represent the numbers.

		The parts are 2 and 4. The whole is 6.	$2+4=6$
Knowing and finding number bonds within 10	Break apart a group and put back together to find and form number bonds. $3+4=7$ $6=2+4$	Use five and ten frames to represent key number bonds. $5=4+1$ $10=7+3$	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero.
Understanding teen numbers as a complete 10 and some more	Complete a group of 10 objects and count more. 13 is 10 and 3 more.	Use a ten frame to support understanding of a complete 10 for teen numbers. 14 is 10 and 4 more.	1 ten and 5 ones equal 15 . $10+5=15$
Adding by counting on	Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Children use counters to support and represent their counting on strategy.	Children use number lines or number tracks to support their counting on strategy.

Year 1
Subtraction
Counting back
and taking
away
Finding a
missing part,
and a part

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \square $+$ \square $=$ \square

\square $=$ \square
\square $+$ \square $=\square$
\square
\square - \square $=$ \square

\hline Finding the difference \& | Arrange two groups so that the difference between the groups can be worked out. |
| :--- |
| 8 is 2 more than 6. |
| 6 is 2 less than 8. |
| The difference between 8 and 6 is 2 . | \& | Represent objects using sketches or counters to support finding the difference. $5-4=1$ |
| :--- |
| The difference between 5 and 4 is 1 . | \& | Children understand 'find the difference' as subtraction. $10-4=6$ |
| :--- |
| The difference between 10 and 6 is 4 . |

\hline | Year 1 |
| :--- |
| Multiplication | \& \& \&

\hline Recognising and making equal groups \& | Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. |
| :--- |
| A |
| B |
| C | \& Children draw and represent equal and unequal groups. \& Three equal groups of 4 . Four equal groups of 3.

\hline Finding the total of equal groups by \& \& 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . \& Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

\hline
\end{tabular}

counting in 2 s , 5s and 10s	There are 5 pens in each pack ... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$		
Year 1 Division			
Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2,5 or 10 .
Sharing	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

Year 2			
	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10 s and 1 s . Bundle straws, pencils or pens to understand unitising of 10 s .	Understand 10s and 1s equipment, and link with visual representations on ten frames. Represent numbers on a place value grid, using equipment or numerals.	Partition 2-digit numbers into 10 s and 1 s $32=30+2$
Learn bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10

	Double 4 $4+4=8$. This is a double	This is a bond to $10.9+1=10$	$\mathbf{+}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{8}$ $\mathbf{9}$ $\mathbf{1 0}$ $\mathbf{0}$ $0+0$ $0+1$ $0+2$ $0+3$ $0+4$ $0+5$ $0+6$ $0+7$ $0+8$ $0+9$ $0+10$ $\mathbf{1}$ $1+0$ $1+1$ $1+2$ $1+3$ $1+4$ $1+5$ $1+6$ $1+7$ $1+8$ $1+9$ $\mathbf{2}$ $2+0$ $2+1$ $2+2$ $2+3$ $2+4$ $2+5$ $2+6$ $2+7$ $2+8$ $\mathbf{3}$ $3+0$ $3+1$ $3+2$ $3+3$ $3+4$ $3+5$ $3+6$ $3+7$ $\mathbf{4}$ $4+0$ $4+1$ $4+2$ $4+3$ $4+4$ $4+5$ $4+6$ $\mathbf{5}$ $5+0$ $5+1$ $5+2$ $5+3$ $5+4$ $5+5$ $\mathbf{6}$ $6+0$ $6+1$ $6+2$ $6+3$ $6+4$ $\mathbf{7}$ $7+0$ $7+1$ $7+2$ $7+3$ $\mathbf{8}$ $8+0$ $8+1$ $8+2$ $\mathbf{9}$ $9+0$ $9+1$ $\mathbf{1 0}$ $10+0$
Adding the 1s	Children represent 10s and 1 s with everyday items.	Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Children recognise that a teen is made from a 10 and some 1s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
Bridging 10 using number bonds	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Use a part-whole model and a number line to support the calculation. $9+4=13$	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.

Add two multiples of 10	Use known bonds and unitising to add 10s. I know that $2+3=5$. So, I know that 2 tens add 3 tens is 5 tens.	Use known bonds and unitising to add 10s. I know that $2+3=5$ So, I know that 2 tens add 3 tens is 5 tens.	Use known bonds and unitising to add 10s. $\begin{aligned} & 3+2=5 \\ & 3 \text { tens }+2 \text { tens }=5 \text { tens } \\ & 30+20=50 \end{aligned}$
Add a 2-digit number and 1 s	Add the 1s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones.	Add the ones using known bonds $1+6=7$ So $41+6=47$	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. So $34+5=39$
Add to the next 10	Use known bonds to 10 to add to the next multiple of 10	Use known bonds to 10 to add to the next multiple of 10	Use known bonds to 10 to add to the next multiple of 10

Add across a

	$5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	 3 ones and 4 ones is 7 ones 4 tens and 3 tens is 7 tens $43+34=77$	$\begin{array}{ll} 30+10=40 & 2+1=3 \\ 32+11=43 & \end{array}$
Year 2 Subtraction			
Subtract two multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\otimes \otimes \not \subset \not \subset \not \subset \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtraction within 20	Subtraction within 20 Understand when and how to subtract 1s efficiently.	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $5-3=2$	Subtraction within 20 Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1 s efficiently.

	$\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	$15-3=12$	$\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$
Subtracting 10s and 1s	Subtracting 10s and 1 s For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First subtract the 10, then subtract 2.	Subtracting 10s and 1s Use a part-whole model to support the calculation. $\begin{array}{r} 19-14 \\ 19-10=9 \\ 9-4=5 \end{array}$ So, $19-14=5$	Subtracting 10s and 1s For example: 18-12 First subtract the 10, then take away 2.
Subtraction bridging 10 using number bonds	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method. $13-5$	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1 s , then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5 .

Subtracting a single-digit number	Subtract the 1s. This may be done in or out of a place value grid using classroom items to represent the numbers.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds.
	T 0 100 0 100 0 100 $\neq \neq \neq$		$9-3=6$
	" 9 ones subtract 3 ones is 6 ones" $39-3=36$	" 9 ones subtract 3 ones is 6 ones" $39-3=36$	$39-3=36$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5 , then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtract tens from a 2-digit number		Subtract tens using known bonds	Subtract tens using known bonds $43-10=33$

		\square \square \square \square $57-10=47$	
Subtract ones from a 2-digit number	Subtract the 1s. This may be done in or out of a place value grid. 9 ones subtract 3 ones is 6 ones. $39-3=36$	Subtract the 1s. This may be done in or out of a place value grid. 9 ones subtract 3 ones is 6 ones. $39-3=36$	Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds. $9-3=6$ $39-3=36$
Subtract tens and ones from a 2-digit number	Subtract 10s then 1 s using place value equipment.	Subtract 10s then 1s with a number line for visual support.	Subtract 10 s then 1 s . $\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$

	$\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$	$\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$	
Subtract ones from a multiple of 10 (preparation for bridging)	Subtract from a 10 using known bonds to 10 using place value equipment.	Subtract from a 10 using known bonds to 10. $50-2=48$	Subtract from a 10 using known bonds to 10. $\begin{aligned} & 10-3=7 \\ & 30-3=27 \\ & 60-3=57 \\ & 90-3=87 \end{aligned}$
Subtract bridging a ten	Subtract in two steps, across a 10 with place value equipment.	Subtract in two steps, across a 10 with a number line for visual support.	Subtract in two steps, across a 10.

	$35-5=30$	$35-5-1=2 q$	$\begin{aligned} & 41-6=41-1-5 \\ & 41-6=35 \end{aligned}$
Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.

and support understanding	1RTMTRMATR 4 groups of 5	4 groups of 5 ... 5 groups of 5	
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3 . They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$

Grouping equally	Understand how to make equal groups from a whole. \square 12 \square \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $\begin{gathered} 12 \div 3=4 \\ O \\ 12 \div 4=3 \\ O \\ 12 \div 6=2 \end{gathered}$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ $\text { I used the } 10$ I used the IO times-table 0 to help me. to help me. $3 \times 10=30$. I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.

In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.

By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .

Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.

Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2- and 3-digit numbers by a single digit.
Children develop column methods to support multiplications in these cases.

For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.

Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.

Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

Year 3

	Concrete	Pictorial	Abstract

Year 3 Addition			
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens. - 3 (3) 3 (3) 10 - * * 3 불 20 - (2) ? 30 - (3) 5 50 5 50 - (4) (3) (3) 30 - (8) () 70 - (2) (3) 80 - (3) - (3) (3) 3 (3) 100	Unitise 100 and count in steps of 100.	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0 .
Understanding place value to 1,000	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.

Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use known facts and unitising to add multiples of 100. Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number $+1 \mathrm{~s}, \text { no }$ exchange or bridging	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bonds to add the 1 s . Use number bonds to add the ls. $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \end{aligned}$ $245+4=249$	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s. $5+4=9$

Princess Frederica Calculation Policy

			So, $245+4=249$

Princess Frederica Calculation Policy

| | | $385+50=435$ |
| :--- | :--- | :--- | :--- |

3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition. a $\square \square=$ \square	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

Princess Frederica Calculation Policy

)

3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid. (89898)	Use column addition, ensuring understanding of place value at every stage of the calculation. $\begin{array}{r} H \quad T \quad O \\ \hline 1 \begin{array}{r} 2 \\ 1 \end{array} \\ +27 \\ \hline 43 \\ \hline \square \end{array}$ $\begin{array}{rrr} H & \text { T } & \text { a } \\ \hline 1 & 2 & 6 \\ +2 & 1 & 7 \\ \hline 3 & 4 & 3 \\ \hline \end{array}$ $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?

Princess Frederica Calculation Policy

)

Princess Frederica Calculation Policy

| | | I know that $7-4=3$. Therefore, I know that
 $700-400=300$. |
| :--- | :--- | :--- | :--- |

3－digit number －1s，no exchange	Use number bonds to subtract the 1 s ．	Use number bonds to subtract the 1 s ．			Understand the link with counting back using a number line． Use known number bonds to calculate mentally． $476-4=?$
		H	T	0	
				$\begin{aligned} & \hline \text { 品 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	
		3	I	9	
	$214-3=?$	$319-4=?$			$\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
	\square	H	T	0	
			㽬		
	yoxy 10 LOLLIES $\times N$	3	I	q	
	$\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	$\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$			
3－digit number －1s，exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged． Use place value equipment．	Represent the required exchange on a place value grid．$151-6=?$			Calculate mentally by using known bonds．$151-6=?$$151-1-5=145$
		H	T	0	
		\＃\＃\＃	目䈟䦩	－	
		H	T	0	
		\＃\＃	贔贔	$\begin{array}{\|l\|} \hline 00000 \\ \hline 8 \\ \hline \end{array}$	

Princess Frederica Calculation Policy

3-digit number -10s, no exchange	Subtract the 10s using known bonds. $381-10=?$ 8 tens with 1 removed is 7 tens. $381-10=371$	Subtract the 10s using known bonds. $\begin{aligned} & 8 \text { tens }-1 \text { ten }=7 \text { tens } \\ & 381-10=371 \end{aligned}$	Use known bonds to subtract the 10s mentally. $\begin{aligned} & 372-50=? \\ & 70-50=20 \end{aligned}$ So, $372-50=322$
3-digit number - 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment.$210-20=?$H T O \#\# 相 目 I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $235-60=?$ $\begin{aligned} 235 & =100+130+5 \\ 235-60 & =100+70+5 \\ & =175 \end{aligned}$

Princess Frederica Calculation Policy

)

Princess Frederica Calculation Policy

)

Year 3 Multiplication			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and non-examples using objects. Children recognise that arrays can be used to model commutative multiplications. I can see 3 groups of 8 . I can see 8 groups of 3.	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4 . This is 4 groups of 3 .	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 . $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$ A bar model may represent multiplications as equal groups. $6 \times 4=24$

Using commutativity to support understanding of the times-tables	Understand how to use times-tables facts flexibly. II There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understanding and using $\times 3$, $\times 2, \times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables. ¿०००० $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$

Princess Frederica Calculation Policy

)

Multiplying a 2-digit number by a 1 -digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100s. $4 \times 23=?$ (1) $4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\begin{array}{ll} 5 \times 28=? \\ \frac{T O}{28} & \\ \times \begin{array}{r} 5 \\ \hline 40 \\ \hline 100 \\ \hline 140 \end{array} & 5 \times 20 \\ \hline \end{array}$

Princess Frederica Calculation Policy

)

Princess Frederica Calculation Policy

			$32 \div 8=4$

| Understanding remainders | Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.
 \||||||||||||| $\square \square \square \mid$
 There are 13 sticks in total.
 There are 3 groups of 4 , with 1 remainder. | Use images to explain remainders.
 $22 \div 5=4$ remainder 2 | Understand that the remainder is what cannot be shared equally from a set. $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Using known facts to divide multiples of 10 | Use place value equipment to understand how to divide by unitising.
 Make 6 ones divided by 3.
 Now make 6 tens divided by 3.
 What is the same? What is different? | Divide multiples of 10 by unitising.
 12 tens shared into 3 equal groups. 4 tens in each group. | Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$
 180 is 18 tens.
 18 divided by 3 is 6 .
 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$ |

2－digit number divided by 1－digit number，no remainders			Children partition a number into 10 s and 1 s to divide where appropriate．
	Children explore dividing 2－digit numbers by using place value equipment．	Children explore which partitions support particular divisions．	68
		42	
	サ11110 $\square^{\text {日 }}$ 回	3	608
	ताmmm		
	W11110		$\begin{gathered} 60 \div 2=30 \\ 8 \div 2=4 \end{gathered}$
	$48 \div 2=?$	펲mum	$\begin{aligned} & 30+4=34 \\ & 68 \div 2=34 \end{aligned}$
	First divide the 10 s		Children partition flexibly to divide where appropriate．
	First divide the 10s．	I need to partition 42 differently to divide by 3.	$42 \div 3=?$
	（1minim	42	$42=40+2$
			I need to partition 42 differently to divide by 3.
	Then divide the 1 s ．		$42=30+12$
	बロロロ	$42=30+12$	$\begin{aligned} & 30 \div 3=10 \\ & 12 \div 3=4 \end{aligned}$
	ロロロロ	$42 \div 3=14$	$\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$

2-digit number divided by 1-digit number, with remainders			Partition to divide, understanding the remainder in context.
	Use place value equipment to understand the concept of remainder.	Use place value equipment to understand the concept of remainder in division.	67 children try to make 5 equal lines.
	Make 29 from place value equipment. Share it into 2 equal groups.	$29 \div 2=?$	$\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$
			$\begin{aligned} & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$
	There are two groups of 14 and 1 remainder.	$29 \div 2=14$ remainder 1	There are 13 children in each line and 2 children left out.

Year 4			
	Concrete	Pictorial	Abstract
Year 4 Addition			
Understanding numbers to $10,000$	Use place value equipment to understand the place value of 4-digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000s and 100s. $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100s mentally. $200+300=500$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Princess Frederica Calculation Policy

		So, $4,256+300=4,556$	

Princess Frederica Calculation Policy

)

Princess Frederica Calculation Policy

		$4 \times 8=32$	$=108$

Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.
Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total.	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{12 \times 10}= \\ & =120 \end{aligned}$ So, $24 \times 5=120$

	$\underbrace{5 \times 2}_{10 \times 3} \times 3=30$		
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array.	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

| | 8 tens divided into 2 equal groups
 4 tens in each group | $9 \div 3=3$ |
| :--- | :--- | :--- | :--- |
| 8 hundreds divided into 2 equal groups
 4 hundreds in each group | 9 tens divided by 3 is 3 tens.
 9 hundreds divided by 3 is 3 hundreds. | |

Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3

UPPER KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.

Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.

Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.

Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Princess Frederica Calculation Policy

)

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0 \cdot 6+0 \cdot 2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \\ +0 \cdot 4 \\ \hline 0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 6 \\ \hline \end{array}$

Princess Frederica Calculation Policy

Choosing efficient methods					To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions. I calculated $7,546-2,355=5,191$. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length.$\begin{aligned} & 0.49 \mathrm{~m} \\ & 1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m} \\ & 1-0.49=? \end{aligned}$	Use a place value grid to represent the stages of column subtraction, including exchanges where required.$5 \cdot 74-2 \cdot 25=?$			Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$
		0 000		Hth $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 74 \\ -2 \cdot 2 \quad 5 \\ \hline \end{array}$	$\begin{array}{cccc} 0 & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 & \text { Thth } \\ \hline 3 & 2 & 1 \end{array}$
		Exchange I ten	th for 10 hundredt		$\begin{array}{cccc} -3 \cdot 7 & 5 & 0 \\ \hline & \cdot & & \\ \hline \end{array}$
			he 5 hundredths.		
			he 2 tenths, then	he 2 ones.	

Princess Frederica Calculation Policy

Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and non-examples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10.	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Princess Frederica Calculation Policy

)

Multiplying up to 4-digits by 2-digits		Use the area model then add the parts. $143 \times 12=1,716$ There are 1,716 boxes of cereal in total. $143 \times 12=1,716$	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. $1,274 \times 32=?$ First multiply 1,274 by 2. $\begin{array}{r} 1274 \\ \times \quad 32 \\ \times \quad 1,274 \times 2 \end{array}$ \qquad Then multiply 1,274 by 30. $\begin{array}{rrrr} 12 & 7 & 4 & \\ \times & 3 & 2 \\ \hline & 2 & 5,4 & 8 \\ 1,274 \times 2 \\ 3 & 8,2, & 2 & 0 \\ \hline \end{array}$ Finally, find the total.

Princess Frederica Calculation Policy

	$24 \div 5=4$ remainder 4.		
	00000		
00000			
00000			
00000			
0000			
	is not a factor of 24 because there is a		
remainder.			

Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

Princess Frederica Calculation Policy

)

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 950	Subtract efficiently from powers of 10 . $10,000-500=?$

		So, the difference is 800 thousands. $950,000-150,000=800,000$	

Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 Method 4 $\begin{array}{r} 3225 \\ \times \\ \\ \hline 1290 \\ \hline 102 \end{array}$
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages. $\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & 2 & 1 & \\ \hline & 1 & 2 & 3 & 5 & \\ & 4 \times 1,235 \\ 2 & 4 & 7 & 0 & 0 & 20 \times 1,235 \\ & 5 & 9 & 3 & 5 & 21 \times 1,235 \\ \hline \end{array}$

Princess Frederica Calculation Policy

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10. Exchange each group of ten tenths. $0.3 \times 10=?$ $0 \cdot 3$ is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0 \cdot 3 \times 10=3$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10,100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2 \cdot 5 \times 10 \times 2 \\ & =50 \end{aligned}$

Princess Frederica Calculation Policy

)

Princess Frederica Calculation Policy

Year 6 Division			
Understanding factors	Use equipment to explore different factors of a number. $24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30 .	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. $-0 \cdot \bullet \bullet \bullet 0 \bullet \bullet \bullet \bullet \bullet$ $-000 \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet ~$ There are 78 in total. There are 6 groups of 13. There are 13 groups of 6 .		Use short division to divide by a single digit. $\begin{aligned} & 0 \\ & 6 \longdiv { 1 1 ^ { \prime } 3 \quad 2 } \\ & \\ & 6 \longdiv { 1 ^ { \prime } 3 ' ^ { \prime } 2 } \end{aligned}$ $\begin{array}{r} 0 \quad 2 \quad 2 \\ 6 \longdiv { 1 } \begin{array} { r } { 1 3 { } ^ { \prime } 2 } \end{array} \end{array}$ Use an area model to link multiplication and division. $132=120+12$ $132 \div 6=20+2=22$

Princess Frederica Calculation Policy

Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division.$1,260 \div 14=?$		Use factors and repeated division where appropriate.
				$2,100 \div 12=?$
		1,260		$2.100 \rightarrow+\square \rightarrow$
		$1,260 \div 2=630$		$\begin{aligned} & 2,100 \rightarrow+6 \rightarrow+ \\ & 2,100 \rightarrow+3 \end{aligned} \rightarrow+4$
		$\begin{aligned} & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$		$2.100 \rightarrow 4 \rightarrow 4$
				$2.100 \rightarrow+3 \rightarrow 2 \rightarrow+2 \rightarrow$

